

8-bit Constant Current LED Sink Driver

Features

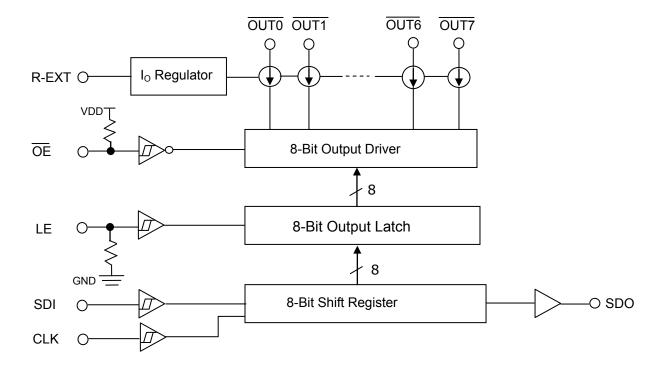
- 8 constant-current output channels
- Constant output current invariant to load voltage change
- Excellent output current accuracy: between channels: < ±3% (max.), and between ICs: < ±6% (max.)
- Output current adjusted through an external resistor
- Constant output current range: 5 -120 mA
- Fast response of output current, OE (min.): 200 ns @I_{out} < 60mA OE (min.): 400 ns @I_{out} = 60~100mA
- 25MHz clock frequency
- Schmitt trigger input
- 3.3V~ 5V supply voltage
- Package MSL Level : 3

Current AccuracyConditionsBetween ChannelsBetween ICsConditions $< \pm 3\%$ $< \pm 6\%$ $I_{OUT} = 10 \sim 100 \text{ mA},$
 $V_{DS} = 0.8V, V_{DD} = 5.0V$

Product Description

MBI5168 is designed for LED display applications. As an enhancement of its predecessor, MBI5001, MBI5168 exploits PrecisionDrive[™] technology to enhance its output characteristics. MBI5168 contains a serial buffer and data latches, which convert serial input data into parallel output format. At MBI5168 output stage, eight regulated current ports are designed to provide uniform and constant current sinks for driving LEDs within a large range of Vf variations.

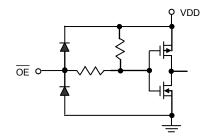
MBI5168 provides users with great flexibility and device performance while using MBI5168 in their system design for LED display applications, e.g. LED panels. Users may adjust the output current from 5 mA to 120 mA through an external resistor R_{ext} , which gives users flexibility in controlling the light intensity of LEDs. MBI5168 guarantees to endure maximum 17V at the output ports. The high clock frequency up to 25 MHz also satisfies the system requirements of high volume data transmission.

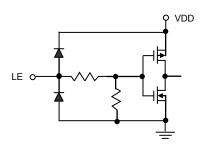

Terminal Description

Pin No.	Pin Name	Function
1	GND	Ground terminal for control logic and current sinks
2	SDI	Serial-data input to the shift register
3	CLK	Clock input terminal for data shift on rising edge
		Data strobe input terminal
4	LE	Serial data is transferred to the respective latch when LE is high. The data is latched when LE goes low.
5-12	OUT0~OUT7	Constant current output terminals
13	ŌE	Output enable terminal When (active) low, the output drivers are enabled; when high, all output drivers are turned OFF (blanked).
14	SDO	Serial-data output to the following SDI of next driver IC
15	R-EXT	Input terminal used to connect an external resistor for setting up output current for all output channels
16	VDD	Supply voltage terminal

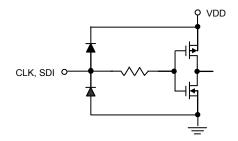
Pin Description

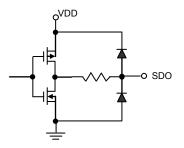
GND	1	16	VDD
SDI	2	15	R-EXT
CLK	3	14	SDO
LE	4	13	OE
OUT0	5	12	OUT7
OUT1	6	11	OUT6
OUT2	7	10	OUT5
	8	9	$\blacksquare \overline{OUT4}$

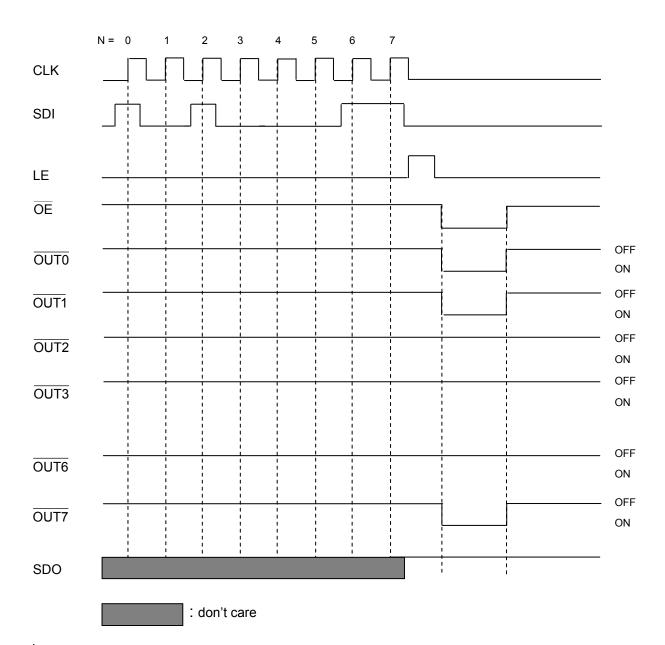

Block Diagram



Equivalent Circuits of Inputs and Outputs


OE terminal




CLK, SDI terminal

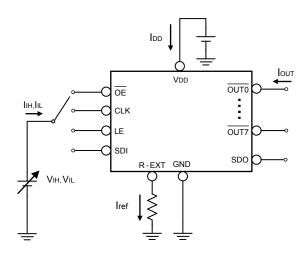
Timing Diagram

Truth Table

CLK	LE	OE	SDI	OUT0 OUT5 OUT 7	SDO
	Н	L	D _n	Dn Dn - 5 Dn - 7	D _{n-7}
	L	L	D _{n+1}	No Change	D _{n-6}
	Н	L	D _{n+2}	$\overline{Dn+2}$ $\overline{Dn-3}$ $\overline{Dn-5}$	D _{n-5}
T.	Х	L	D _{n+3}	Dn + 2 Dn - 3 Dn - 5	D _{n-5}
—	х	Н	D _{n+3}	Off	D _{n-5}

Maximum Ratings

Characteristic		Symbol	Rating	Unit	
Supply Voltage	Supply Voltage		V _{DD}	0 ~ 7.0	V
Input Voltage (SDI, CL	K, LE, GCLK)		V _{IN}	-0.4 ~ V _{DD} +0.4	V
Output Current			I _{OUT}	+120	mA
Output Voltage			V _{DS}	-0.5 ~ +20.0	V
Clock Frequency			F _{CLK}	25	MHz
GND Terminal Current			I _{GND}	1000	mA
		GN		1.66	
Power Dissipation		GD		1.43	W
(On PCB, Ta=25°C)		GDW	P _D	1.99	vv
		GP		1.25	
		GN		60.20	
Thermal Resistance		GD		70.14	°C/W
(On PCB, Ta=25°C)		GDW	R _{th(j-a)}	50.17	C/VV
		GP		80.00	
Junction Temperature			T _j , _{max}	150**	°C
Operating Ambient Temperature		T _{opr}	-40~+85	°C	
Storage Temperature		T _{stg}	-55~+150	°C	
HBM (MIL-S Method 3015 Human Body		5.7,	НВМ	Class 2 (2000~3999V)	-
ESD Rating	MM (JEDEC EIA/JESD22-A115, Machine Mode)		MM	Class 3 (>400V)	-


Electrical Characteristics (V_{DD} = 5.0V, Ta=25 °C)

Characte	ristic	Symbol	Con	dition	Min.	Тур.	Max.	Unit
Supply Voltage		V _{DD}		-	4.5	5.0	5.5	V
Output Voltage		V _{DS}	$\overline{\text{OUT0}}$ ~ $\overline{\text{OUT7}}$		-	-	17.0	V
		I _{OUT}	Test Circuit for Elec	ctrical Characteristics	5	-	120	mA
Output Current		I _{OH}	SDO		-	I	-1.0	mA
		I _{OL}	SDO		-	I	1.0	mA
Input Voltage	"H" level	V _{IH}	Ta = -40~85°C		$0.7V_{\text{DD}}$	-	V_{DD}	V
input voltage	"L" level	V _{IL}	Ta = -40~85°C		GND	I	$0.3V_{\text{DD}}$	V
Output Leakage	Current	I _{OH}	V _{OH} = 17.0V and ch	nannel off	-	-	0.5	μA
Output Voltage	SDO	V _{OL}	I _{OL} = +1.0mA		-	-	0.4	V
Output voltage	300	V _{OH}	I _{он} = -1.0mA		4.6	-	-	V
Output Current 1		I _{OUT1}	V _{DS} = 0.5V	R _{ex t} = 744 Ω	-	25.26	-	mA
Current Skew (between channe	els)	dl _{out1}	$\begin{array}{l} I_{\text{OUT}} \text{ = } 25.26\text{mA} \\ V_{\text{DS}} \geq 0.5\text{V} \end{array}$	R _{ext} = 744 Ω	-	±1	±3	%
Output Current 2	2	I _{OUT2}	V _{DS} = 0.6V	V _{DS} = 0.6V R _{ext} = 372 Ω		50.52	-	mA
Current Skew (between channe	els)	dl _{out2}	$\label{eq:lour_local} \begin{split} I_{OUT} &= 50.52 \text{mA} \\ V_{DS} &\geq 0.6 \text{V} \end{split} \qquad $		-	±1	±3	%
Output Current 3	3	I _{OUT3}	V _{DS} = 0.8V	R _{ext} = 186 Ω	-	101.0	-	mA
Current Skew (between channe	els)	dl _{out3}	I _{OUT} = 101.0mA V _{DS} ≥0.8V	R _{ext} = 186 Ω	-	±1	±3	%
Output Current v Output Voltage F		$%/dV_{DS}$	V _{DS} within 1.0V and	1 3.0V	-	±0.1	-	% / V
Output Current v Supply Voltage I		%/dV _{DD}	V_{DD} within 4.5V and	15.5V	-	±1	-	% / V
Pull-up Resistor		R _{IN} (up)	ŌĒ		250	500	800	KΩ
Pull-down Resis	tor	R _{IN} (down)	LE		250	500	800	KΩ
		I _{DD} (off) 1	R _{ext} = Open, OUTO	~ OUT7 = Off	-	2.85	3.65	
"OFF"	"ОГГ"	I _{DD} (off) 2	$R_{ext} = 744 \Omega, \overline{OUTO}$	$\sim \overline{\text{OUT7}}$ = Off	-	5.9	7.9	
	OFF	I _{DD} (off) 3	$R_{ext} = 372 \Omega, \overline{OUTO} \sim \overline{OUT7} = Off$		-	8.7	10.7	
Supply Current		I _{DD} (off) 4	R _{ext} = 186 Ω, <u></u> OUTO	~ OUT7 = Off	-	14.4	16.4	mA
		I _{DD} (on) 1	$R_{ext} = 744 \Omega, \overline{OUTO}$	~ OUT7 = On	-	5.8	7.8	
	"ON"	I _{DD} (on) 2	R _{ext} = 372 Ω, <u>OUTO</u>	~ OUT7 = On	-	8.7	10.7	
		I _{DD} (on) 3	R _{ext} = 186 Ω, <u></u> OUT0	~ OUT7 = On	-	13.5	15.5	

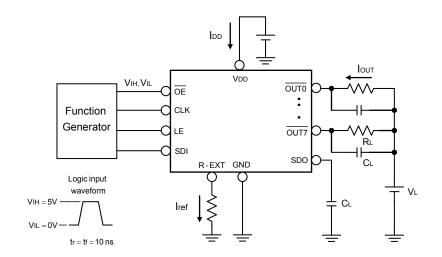
Electrical Characteristics (V_{DD} = 3.3V, Ta=25 °C)

Characte	ristic	Symbol	Con	dition	Min.	Тур.	Max.	Unit
Supply Voltage		V _{DD}		-	3.0	3.3	3.6	V
Output Voltage		V _{DS}	OUTO ~ OUT7		-	-	17.0	V
		I _{OUT}	Test Circuit for Elec	ctrical Characteristics	5	-	120	mA
Output Current		I _{ОН}	SDO		-	-	-1.0	mA
		I _{OL}	SDO		-	-	1.0	mA
	"H" level	V _{IH}	Ta = -40∼85°C		$0.7V_{DD}$	-	V_{DD}	V
Input Voltage	"L" level	V _{IL}	Ta = -40~85°C		GND	-	$0.3V_{\text{DD}}$	V
Output Leakage	Current	I _{OH}	V _{OH} = 17.0V and ch	nannel off	-	-	0.5	μA
Output Voltage	SDO	V _{OL}	I _{OL} = +1.0mA		-	-	0.4	V
Oulput Voltage	300	V _{OH}	I _{он} = -1.0mA		2.9	-	-	V
Output Current 1	l	I _{OUT1}	V _{DS} = 0.5V	R _{ex t} = 744 Ω	-	25.26	-	mA
Current Skew (between channe	els)	dl _{out1}	$\begin{array}{l} I_{OUT} = 20.1 mA \\ V_{DS} \geq 0.5 V \end{array} \end{array} \label{eq:lour_optimal_states}$	R _{ext} = 744 Ω	-	±1	±3	%
Output Current 2	2	I _{OUT2}	V _{DS} = 0.6V	R _{ext} = 372 Ω	-	50	-	mA
Current Skew (between channe	els)	dl _{OUT2}	I_{OUT} = 50mA $V_{DS} \ge 0.6V$	R _{ext} = 372 Ω	-	±1	±3	%
Output Current v Output Voltage F		%/dV _{DS}	V _{DS} within 1.0V and	1 3.0V	-	±0.1	-	% / V
Output Current v Supply Voltage I		$\%/dV_{DD}$	V_{DD} within 3.2V and	1 3.6V	-	±1	-	% / V
Pull-up Resistor		R _{IN} (up)	ŌĒ		250	500	800	KΩ
Pull-down Resis	tor	R _{IN} (down)	LE		250	500	800	KΩ
	I _{DC}		$R_{ext} = Open, \overline{OUTO}$	∼ OUT7 = Off	-	0.78	1.58	
	"OFF"	I _{DD} (off) 2	$R_{ext} = 744 \Omega, \overline{OUTO} \sim \overline{OUT7} = Off$		-	3.6	4.4	
Supply Current		I _{DD} (off) 3	$R_{ext} = 372 \Omega, \overline{OUTO}$	~ OUT7 = Off	-	6.5	7.3	mA
	"ON"	I _{DD} (on) 1	$R_{ext} = 744 \Omega, \overline{OUTO}$	~ OUT7 = On	-	3.6	4.2	
		I _{DD} (on) 2	$R_{ext} = 372 \Omega, \overline{OUTO}$	~ OUT7 = On	-	6.4	7.2	

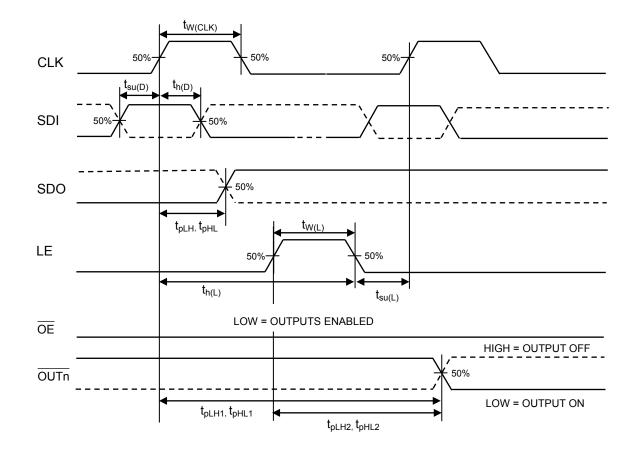
Test Circuit for Electrical Characteristics

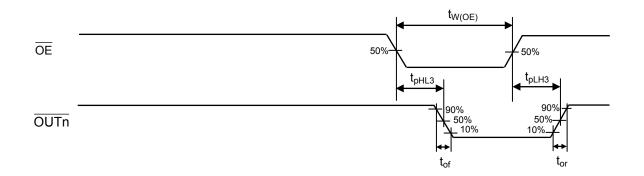
Switching Characteristics (V_{DD}= 5.0V, Ta=25 °C)

Characteristic		Symbol	Condition	Min.	Тур.	Max.	Unit
	CLK - OUTn	t _{pLH1}		-	100	150	ns
Propagation Delay	LE - OUTn	t _{pLH2}		-	100	150	ns
Time ("L" to "H")	OE - OUTn	t _{pLH3}		-	100	150	ns
	CLK - SDO	t _{pLH}		20	25	30	ns
	CLK - OUTn	t _{pHL1}	_	-	100	150	ns
Propagation Delay	LE - OUTn	t _{pHL2}		-	100	150	ns
Time ("H" to "L")	OE - OUTn	t _{pHL3}	Test Circuit for Switching	-	100	150	ns
	CLK - SDO	t _{pHL}	Characteristics	20	25	30	ns
	CLK	t _{w(CLK)}	$V_{DD} = 5.0 V$ $V_{DS} = 0.8 V$ $V_{IH} = V_{DD}$ $V_{IL} = GND$ $R_{ext} = 372 \Omega$ $V_{L} = 4.0 V$ $R_{L} = 64 \Omega$	20	-	-	ns
Pulse Width	LE	t _{w(L)}		20	-	-	ns
	<u>OE</u> (@I _{OUT} < 60mA)	t _{w(OE)}		200	-	-	ns
Hold Time for LE		t _{h(L)}		10	-	-	ns
Setup Time for LE		t _{su(L)}		5	-	-	ns
Hold Time for SDI		t _{h(D)}		10	-	-	ns
Setup Time for SDI		t _{su(D)}	C _L = 10 pF	5	-	-	ns
Maximum CLK Rise	Time	t _r *		-	-	500	ns
Maximum CLK Fall Time		t _f *		-	-	500	ns
SDO Rise Time		t _{r,SDO}		-	10	15	ns
SDO Fall Time		t _{f,SDO}		-	10	15	ns
Output Rise Time of Vout (turn off)		t _{or}		-	120	150	ns
Output Fall Time of	Vout (turn on)	t _{of}		-	200	250	ns
Clock Frequency		F _{CLK}	Cascade Operation	-	-	25.0	MHz


*If the devices are connected in cascade and t_r or t_f is large, it may be critical to achieve the timing required for data

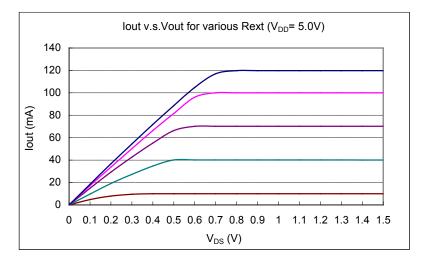
transfer between two cascaded devices.


Switching Characteristics (V_{DD}= 3.3V, Ta=25 °C)


Characteristic		Symbol	Condition	Min.	Тур.	Max.	Unit
	CLK - OUTn	t _{pLH1}		-	100	150	ns
Propagation Delay	LE - OUTn	t _{pLH2}		-	100	150	ns
Time ("L" to "H")	OE - OUTn	t _{pLH3}		-	100	150	ns
	CLK - SDO	t _{pLH}		45	55	65	ns
	CLK - OUTn	t _{pHL1}		-	130	200	ns
Propagation Delay	LE - OUTn	t _{pHL2}	Test Circuit for Switching	-	130	200	ns
Time ("H" to "L")	OE - OUTn	t _{pHL3}	Characteristics	-	130	200	ns
	CLK - SDO	t _{pHL}		45	55	65	ns
	CLK	t _{w(CLK)}	V _{DD} = 3.3 V	20	-	-	ns
Pulse Width	LE	t _{w(L)}	$V_{DS} = 0.8 V$ $V_{IH} = V_{DD}$	20	-	-	ns
	<u>OE</u> (@I _{OUT} < 50mA)	t _{w(OE)}	$V_{LL} = GND$ $R_{ext} = 380 \Omega$ $V_{L} = 4.0 V$ $R_{L} = 64 \Omega$	200	-	-	ns
Hold Time for LE		t _{h(L)}		10	-	-	ns
Setup Time for LE		t _{su(L)}		5	-	-	ns
Hold Time for SDI		t _{h(D)}	C _L = 10 pF	10	-	-	ns
Setup Time for SDI		t _{su(D)}		5	-	-	ns
Maximum CLK Rise Time		tr		-	-	500	ns
Maximum CLK Fall Time		t _f		-	-	500	ns
Output Rise Time of Vout (turn off)		t _{or}		-	120	150	ns
Output Fall Time of	Vout (turn on)	t _{of}		-	200	400	ns
Clock Frequency		F _{CLK}	Cascade Operation	-	-	12.0	MHz

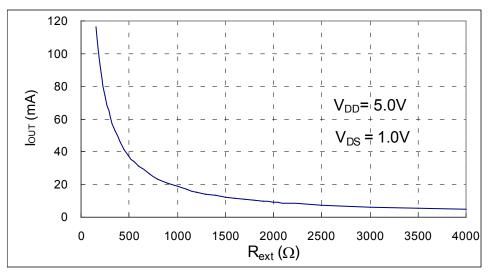
Test Circuit for Switching Characteristics

Timing Waveform



Application Information

Constant Current


In LED display application, MBI5168 provides nearly no variations in current from channel to channel and from IC

- to IC. This can be achieved by:
- 1) While $I_{OUT} \leq 100$ mA, the maximum current variation between channels is less than ±3%, and that between ICs is less than ±6%.
- 2) In addition, the characteristics curve of output stage in the saturation region is flat and users can refer to the figure as shown below. Thus, the output current can be kept constant regardless of the variations of LED forward voltages (V_F).

Adjusting Output Current

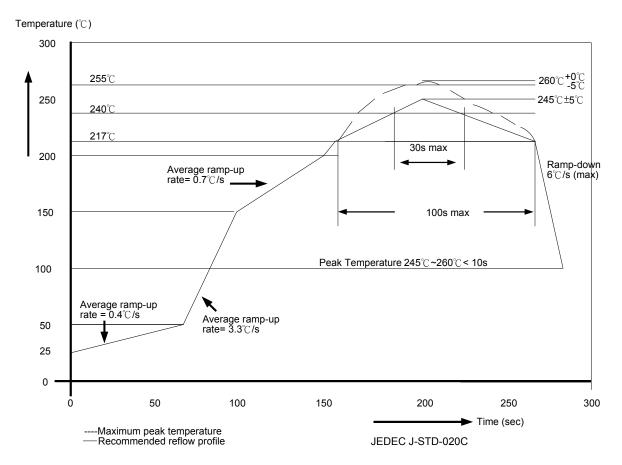
The output current of each channel (I_{OUT}) is set by an external resistor, R_{ext} . The relationship between I_{OUT} and R_{ext} is shown in the following figure.

Resistance of the external resistor, R_{ext} , in Ω

Also, the output current can be calculated from the equation:

 $V_{R-EXT} = 1.253$ Volt

 $I_{ref} = V_{rext} / R_{ext}$ if another end of the external resistor R_{ext} is connected to ground.


 $I_{OUT} = I_{ref} x \ 15 = 1.253 \text{Volt} / R_{ext} x \ 15.$

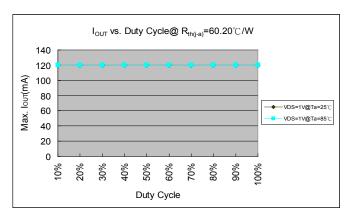
where R_{ext} is the resistance of the external resistor connected to R-EXT terminal and V_{R-EXT} is the voltage of R-EXT terminal. The magnitude of current (as a function of R_{ext}) is around 50.52mA at 372 Ω and 25.26mA at 744 Ω (V_{DD} = 5V).

Soldering Process of "Pb-free & Green" Package Plating*

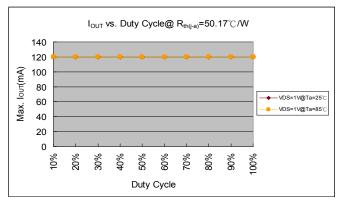
Macroblock has defined "Pb-Free & Green" to mean semiconductor products that are compatible with the current RoHS requirements and selected 100% pure tin (Sn) to provide forward and backward compatibility with both the current industry-standard SnPb-based soldering processes and higher-temperature Pb-free processes. Pure tin is widely accepted by customers and suppliers of electronic devices in Europe, Asia and the US as the lead-free surface finish of choice to replace tin-lead. Also, it adopts tin/lead (SnPb) solder paste, and please refer to the JEDEC J-STD-020C for the temperature of solder bath. However, in the whole Pb-free soldering processes and materials, 100% pure tin (Sn) will all require from 245 °C to 260°C for proper soldering on boards, referring to JEDEC J-STD-020C as shown below.

For managing MSL3 Package, it should refer to JEDEC J-STD-020C about floor life management & refer to JEDEC J-STD-033C about re-bake condition while IC's floor life exceeds MSL3 limitation.

Package Thickness	Volume mm ³ <350	Volume mm ³ 350-2000	Volume $mm^3 \ge 2000$
<1.6mm	260 +0 °C	260 +0 °C	260 +0 °C
1.6mm – 2.5mm	260 +0 °C	250 +0 °C	245 +0 °C
≧2.5mm	250 +0 °C	245 +0 °C	245 +0 °C

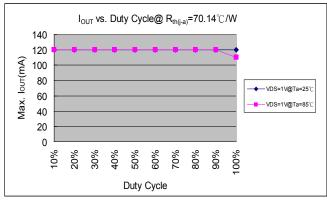

*For details, please refer to Macroblock's "Policy on Pb-free & Green Package".

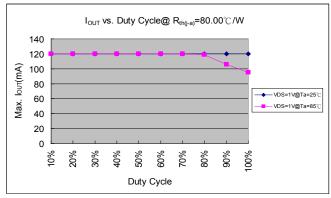
MBI5168


Package Power Dissipation (PD)

The maximum allowable package power dissipation is determined as $P_D(max) = (Tj - Ta) / R_{th(j-a)}$. When 8 output channels are turned on simultaneously, the actual package power dissipation is $P_D(act) = (I_{DD} \times V_{DD}) + (I_{OUT} \times Duty \times V_{DS} \times 8)$. Therefore, to keep $P_D(act) \le P_D(max)$, the allowable maximum output current as a function of duty cycle is:

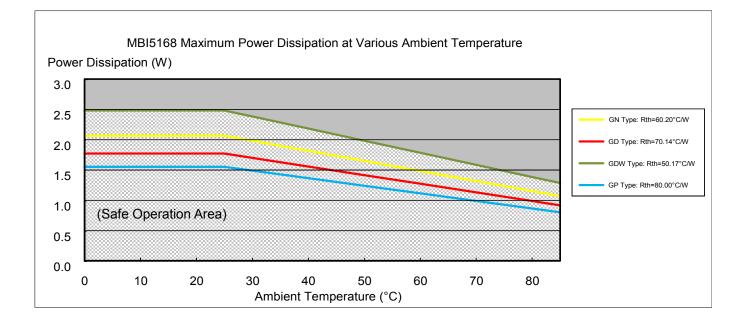
 $I_{OUT} = \{ [(Tj - Ta) / R_{th(j-a)}] - (I_{DD} \times V_{DD}) \} / V_{DS} / Duty / 8,$ where Tj = 150°C.





GDW Device Type

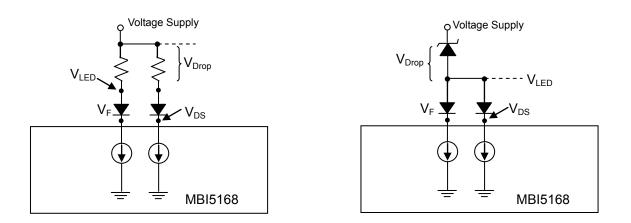
Condition : V_{DS} = 1.0V, V_{DD} = 5.0V, 8 output				
	nels active, Ta is listed in			
the b	the below legends.			
Device Type	R _{th(i-a)} (°C/W)			
GN	60.20			
GD	70.14			
GDW	50.17			
GP	80.00			


GD Device Type

GP Device Type

MBI5168

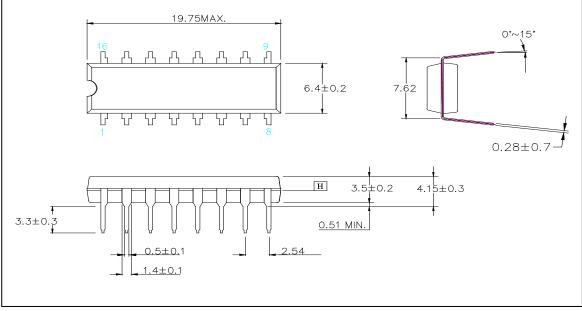
The maximum power dissipation, $P_D(max) = (Tj - Ta) / R_{th(j-a)}$, decreases as the ambient temperature increases.


MBI5168

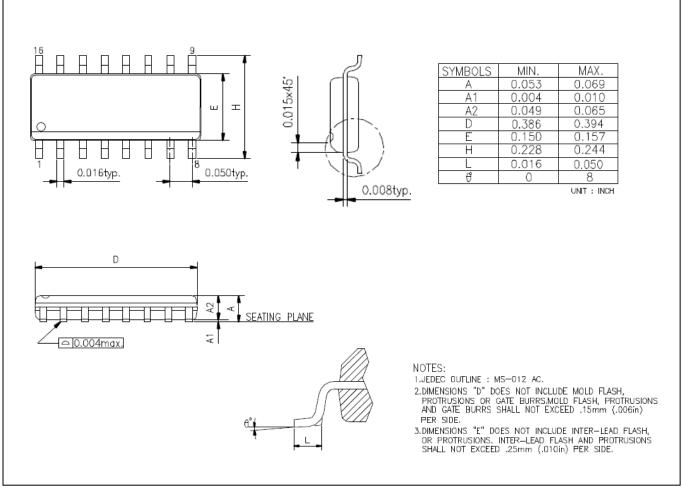
Load Supply Voltage (V_{LED})

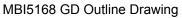
MBI5168 are designed to operate with V_{DS} ranging from 0.4V to 1.0V considering the package power dissipating limits. V_{DS} may be so high as to make $P_{D(act)} > P_{D(max)}$ under higher V_{LED} , for instance, than 5V, where $V_{DS} = V_{LED} - V_F$ and V_{LED} is the load supply voltage. In this case, it is recommended to use the lowest possible supply voltage or to set an external voltage reducer, V_{DROP} .

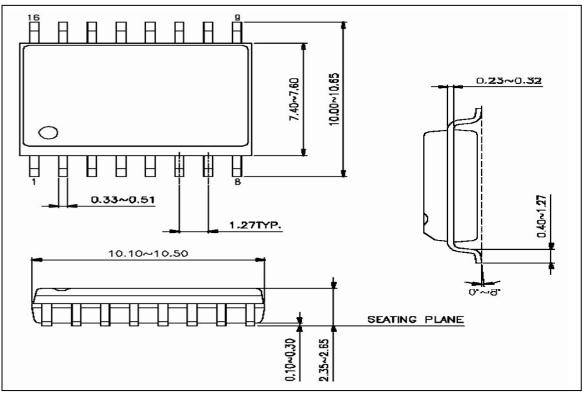
A voltage reducer lets V_{DS} = ($V_{LED} - V_F$) – V_{DROP} .


Resistors or Zener diode can be used in the applications as shown in the following figures.

Switching Noise Reduction

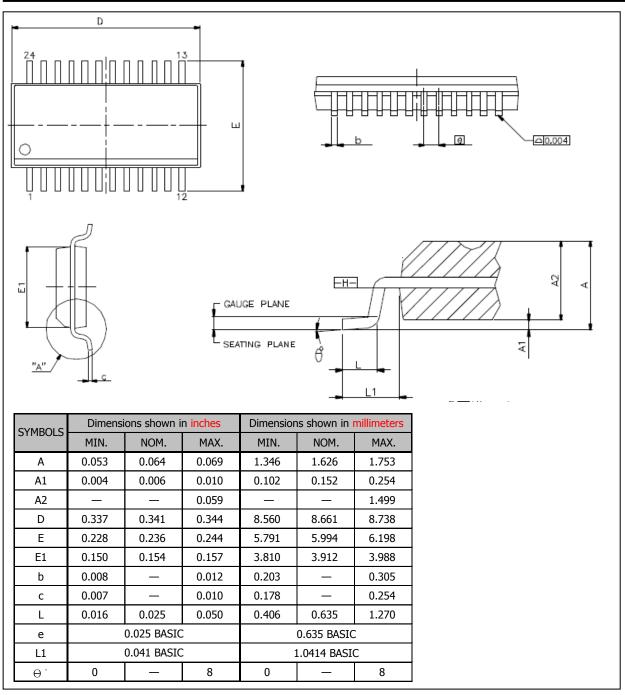

LED Driver ICs are frequently used in switch-mode applications which always behave with switching noise due to parasitic inductance on PCB. To eliminate switching noise, refer to "Application Note for 8-bit and 16-bit LED Drivers- Overshoot".

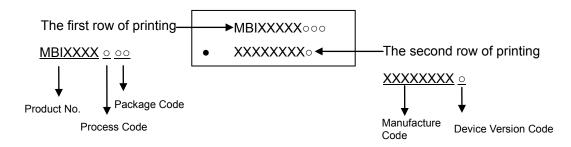

Outline Drawings



MBI5168 GN Outline Drawing

Note: The unit for the outline drawing is mm.




MBI5168 GDW Outline Drawing

Note: The unit for the outline drawing is mm.

MBI5168 GP Outline Drawing

Product Top-mark Information

Product Revision History

Datasheet version	Device version code
VA.00	(Not defined)
VA.02	A
VA.03	A

Product Ordering Information

Product Ordering Number*	RoHS Compliant Package Type	Weight (g)
MBI5168GN-A	P-DIP16-300-2.54	1.02
MBI5168GD-A	SOP16-150-1.27	0.13
MBI5168GDW-A	SOP16-300-1.27	0.37
MBI5168GP-A	SSOP16-150-0.64	0.07

*Please place your order with the "product ordering number" information on your purchase order (PO).

Disclaimer

Macroblock reserves the right to make changes, corrections, modifications, and improvements to their products and documents or discontinue any product or service. Customers are advised to consult their sales representative for the latest product information before ordering. All products are sold subject to the terms and conditions supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

Macroblock's products are not designed to be used as components in device intended to support or sustain life or in military applications. Use of Macroblock's products in components intended for surgical implant into the body, or other applications in which failure of Macroblock's products could create a situation where personal death or injury may occur, is not authorized without the express written approval of the Managing Director of Macroblock. Macroblock will not be held liable for any damages or claims resulting from the use of its products in medical and military applications.

All text, images, logos and information contained on this document is the intellectual property of Macroblock. Unauthorized reproduction, duplication, extraction, use or disclosure of the above mentioned intellectual property will be deemed as infringement.